Jump to content
Hallucinogen Persisting Perception Disorder (HPPD) Support Forum

Search the Community

Showing results for tags 'brain'.

More search options

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


  • Main Forums
    • Introductions
    • Symptoms: Descriptions, Discussion, Debate
    • Medications & Other Treatments
  • Active and Future Research
    • Research Articles, Publications and Studies
  • Community Area
    • Community Open Space
    • Forum Information, Questions and Suggestions


There are no results to display.

There are no results to display.


  • Community Calendar
  • Discussion about future of HPPDonline.com

Product Groups

There are no results to display.

Find results in...

Find results that contain...

Date Created

  • Start


Last Updated

  • Start


Filter by number of...


  • Start





Website URL







Administration Role

Found 6 results

  1. hi, I state that I've never used psychedelics, I'm here because I have a friend who says he has hppd after a bad trip, what are your symptoms? I also have After-images, objects that leave trails, visual snow (especially in poorly lit areas) if I look for more than 10 seconds one thing I see it moving and breathing (even the text I'm writing now, if I pay attention I can see it move) if I look at square surfaces I can see static lights that create geometric shapes (even as a child I could lol) if I notice I have a ton of floaters, with all this I want to say that these "bugs" we have them all, only that we ignore them because they are not important for our conscience. the friend who claims to have hppd to me seems more that has a kind of ptsd that is activated when you notice these visual "bugs", then I noticed that even if I focus so much on the visual snow for example I will start to notice it more until you can not ignore it until something does not distract my attention, if we obsess about a little thing the brain will end up growing it until it becomes a problem, I could even be wrong but this friend has solved quite a bit 'of visual problems simply ignoring them, when he saw them he looked away and did not think about it, in this way the brain has activated again that filter that serves to remove the visual noise, the important thing is to make the brain understand that that information is not important to you. sorry if I wrote badly but I used google translator, thanks for reading
  2. I have only done about 10 hours of research on this, which is not much. Ideally I would like a couple more weeks to wrap my head around something before I recommend it and I need time to see the long-term effects for me also. But I have a strong inclination to quickly get this information to the group, so perhaps this will help someone else suffering. Maybe this works, maybe it doesn't. I cannot recommend this as a cure, but I can only say this has helped me. However, I am not sure if it placebo. Anyways, I did an 18 hour fast and it helped with my HPPD. I will keep the anecdote short, because anecdotes never matter. What really matters is science and peer-review. I did this short-fast because I saw someone on here mention in a success story of curing HPPD on a 3 day fast. Someone commenting suggesting that it has to do with "neurogenesis". I did research on neurogenesis and it happens throughout our lives, such as during exercise or sex, so it doesn’t seem very significant. But, I stumbled upon a term called "autophagy" ah-ta-fa-gee. Researching this process gave me motivation to try a 18 hour fast. My HPPD since then has gotten better. On a scale of 1-10 my symptoms have been at a 5 since Saturday, when they usually average about 7 or 8. I am theorizing my symptoms decreased because fasting induces autophagy. Here is Autophagy from an article . "Short-term fasting induces profound neuronal autophagy" https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3106288/ Autophagy is a key homeostatic mechanism whose physiological importance is reflected by its preservation throughout the eukaryotic phylogenetic tree, from yeast to mammals. In recent years, autophagy has been recognized as a crucial defense mechanism against malignancy, infection and neurodegenerative diseases Here is another definition. "Autophagy: cellular and molecular mechanisms" https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2990190/ Autophagy is a self-degradative process that is important for balancing sources of energy at critical times in development and in response to nutrient stress. Autophagy also plays a housekeeping role in removing misfolded or aggregated proteins, clearing damaged organelles, such as mitochondria, endoplasmic reticulum and peroxisomes, as well as eliminating intracellular pathogens. Thus, autophagy is generally thought of as a survival mechanism. Autophagy is strongly induced by starvation and is a key component of the adaptive response of cells and organisms to nutrient deprivation that promotes survival until nutrients become available again. Stay with me here. But it pretty much takes out damaged cells from our brains and recycles them in the liver. This process is activated via fasting. "Neuronal autophagy: going the distance to the axon." https://www.ncbi.nlm.nih.gov/pubmed/18000396/ Furthermore, our study implicates dysfunction of axonal autophagy as a potential mechanism underlying axonopathy, which is linked to neurodegeneration associated with numerous human neurological disorders Let me know what you think, I am always prepared to be entirely wrong. There is no research on a link between autophagy and HPPD obviously. So I am assuming a causal relationship that bad neurons are the cause of HPPD. Here are more articles. I am hoping someone can partner and help me with this. "Disruption of Neuronal Autophagy by Infected Microglia Results in Neurodegeneration" http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0002906 "Constitutive autophagy: vital role in clearance of unfavorable proteins in neurons." https://www.ncbi.nlm.nih.gov/pubmed/17332773/ I found 2 posts of anecdotal claims. 2013 bluelight.com post about fasting curing hppd. http://www.bluelight.org/vb/archive/index.php/t-688613.html 2017 Reddit.com hppd forum success story about fasting curing hppd https://www.reddit.com/r/HPPD/comments/6ybbcs/success_story/ You can do an easy 18-hour fast by not eating after dinner at 5pm, and then not eating until noon the next day. Make sure you are healthy and talk to your doctor. I would like a couple people to try this to see if this actually works. I am going to start another fast today and I will report back in a week or so. Hopefully it works. Potential adverse effects for women. there are claims that fasting can cause missed periods. Also, unfortunately it seems autophagy is less profound with females. https://www.ncbi.nlm.nih.gov/pubmed/19036730/ In other words, the damaged neurons have a harder time dying off. For men, fasting will temporary lower testosterone. Do your own research and talk to your doctor.
  3. Hi. Id like to move this project forward - if we want to figure out the solutions, we need to work together. Its not a one man operation, hence I am asking everybody who is interested in seeing it progressing to participate. I will be creating posts with specific subjects and then we can work on it together. Anybody can submit an article, study, anecdote and I will be pasting everything relevant into the top post. This way we will build our small 'encyclopedia' of the desired subjects, which hopefully will give us better insight into solutions for hppd. In this particular post I want to focus on finding out everything on how exercise affect us but also how does different types of exercise influence us. I have seen one guy reporting that his hppd got better after doing particularly sprints! Now I am wondering how sprints affect the brain. From what I have read, lifting weights upregulates dopamine and its receptors. Is that the case for jogging too though? these are the kind of questions id like to get answer to. So let me start with what I found on exercise: Source: http://serendip.brynmawr.edu/bb/neuro/neuro05/web2/mmcgovern.html The Effects of Exercise on the Brain MK McGovern Exercise has been touted to do everything from treat depression to improve memory, with the power to cure a host of problems while preventing even more. In particular, exercise leads to the release of certain neurotransmitters in the brain that alleviate pain, both physical and mental. Additionally, it is one of the few ways scientists have found to generate new neurons. Much of the research done in this area has focused on running, but all types of aerobic exercise provide benefits. Although the exact nature of these benefits is still being determined, enough research has been done to provide even skeptics with a motivation to take up exercise. Exercise exerts its effects on the brain through several mechanisms, including neurogenesis, mood enhancement, and endorphin release. This paper not only examines how these mechanisms improve cognitive functioning and elevate mood states, but also proposes potential directions for future research. Furthermore, it provides an explanation for exercise's generally non-habit forming nature, despite effects on the reward centers of the brain that mimic those of highly addictive drugs like morphine. One of the most exciting changes that exercise causes is neurogenesis, or the creation of new neurons. The new neurons are created in the hippocampus, the center of learning and memory in the brain (1), however the exact mechanism behind this neurogenesis is still being explored. At a cellular level, it is possible that the mild stress generated by exercise stimulates an influx of calcium, which activates transcription factors in existing hippocampus neurons. The transcription factors initiate the expression of the BDNF (Brain-Derived Neurotrophic Factor) gene, creating BDNF proteins that act to promote neurogenesis (17). Thus the generation of BDNF is a protective response to stress, and BDNF acts not only to generate new neurons, but also to protect existing neurons and to promote synaptic plasticity (the efficiency of signal transmission across the synaptic cleft between neurons, generally considered the basis of learning and memory) (1, 3, 17). However, BDNF's effects are more than protective, they are reparative. For example, in a comparison between sedentary and active mice, scientists found that active mice regenerated more sciatic axons post-injury than sedentary mice. This effect was not observed when the active mice were injected with a neurotrophin-blocking agent, indicating that exercise stimulates injured neurons to regenerate axons via neurotrophin-signaling mechanisms (3). This reparative effect is particularly relevant to humans because the brain starts to lose nerve tissue beginning at age 30. Aerobic exercise reinforces neural connections by increasing the number of dendrite connections between neurons, creating a denser network, which is then better able to process and store information (4). This suggests possible preventative and therapeutic effects for diseases such as Alzheimer's and Parkinson's that progress via the loss of neurons. Indeed, a correlation between lifestyle and Alzheimer's has already been demonstrated (6). In addition, exercise has been shown to decrease the loss of dopamine-containing neurons in mice with Parkinson's (2). There is a limit to the positive effects of neurotrophic factors, however. Mice bred to overexercise actually showed an inability to learn. A possible cause for this inability is the disruption of cognitive function by a preoccupation with exercise. The overexercising mice had elevated BDNF and neurogenesis, but the levels reached a plateau that did not increase with more exercise (14). This limitation is further illustrated by a study of exercise effects on a group of 60- to 75-year-olds versus a group of 18- to 24-year-olds. Sedentary 60- to 75-year-olds who began aerobic exercise demonstrated an improvement in executive cognitive functions, e.g. planning, scheduling, and working memory, while the group of 18- 24-year-olds did not. Brain-wave analysis showed a 35-millisecond faster brain response time post-exercise versus pre-exercise in the 18- to 24-year-olds. Essentially, less cognitive function was lost in 18- to 24-year-olds than in 60- to 75-year-olds, so there is less room for improvement, and that improvement will be less obvious (4). Apparently it is not possible to exercise to brilliance. Fortunately, it may be possible to exercise to happiness. It has been shown that physically active people recover from mild depression more quickly, and physical activity is strongly correlated with good mental health as people age (7). Depression is related to low levels of certain neurotransmitters like serotonin and norepinephrine. Exercise increases concentrations of these neurotransmitters by stimulating the sympathetic nervous system (12). In addition, serotonin has a reciprocal relationship with BDNF, i.e. BDNF boosts serotonin production and serotonergic signaling stimulates BDNF expression (17). Since exercise also increases BDNF production directly, there is a reinforcement of the serotonin-BDNF loop, indicating exercise's significant potential as a mood-enhancer. In fact, a combination of exercise and antidepressants (which increase BDNF via the serotonin-BDNF loop) has been particularly effective in treating depressive behaviors in rats. The BDNF gene can be expressed in multiple forms, and physical activity increases the expression of two forms: one with fast but short antidepressive effects, and one with slow but longer antidepressive effects. By combining exercise with antidepressants (which increase the expression of the long-lasting form), scientists were able to both increase and accelerate the production of BDNF. The rats showed a decrease in depressive behaviors in two days instead of the two weeks experienced by those given antidepressants alone, indicating a potential therapy for depressed patients that produces almost immediate results (13). There also seems to be a role for neurogenesis in the treatment of depression. Studies show that the hippocampus of depressed women can be up to 15% smaller than normal. In addition, there is a correlation between the decrease in size and the length of the depression. This damage may be reversed by BDNF-stimulated neurogenesis. Interestingly, the time it took for antidepressants to take effect is equal to the time needed to induce neurogenesis (16). All of these facts seem to point back to BDNF as the key chemical underlying exercise's impact on the brain. Perhaps it is not exercise that has the curative power, but rather BDNF, and exercise is only the trigger. Another factor to consider is endorphins, the chemicals released by the pituitary gland in response to stress or pain. They bind to opioid receptors in neurons, blocking the release of neurotransmitters and thus interfering with the transmission of pain impulses to the brain (12). Exercise stimulates the release of endorphins within approximately 30 minutes from the start of activity. These endorphins tend to minimize the discomfort of exercise and are even associated with a feeling of euphoria. There is some uncertainty around the cause of this euphoria since it's not clear if endorphins are directly responsible for it, or if they just block pain and allow the pleasure associated with neurotransmitters such as serotonin and dopamine to be more apparent (15). If the latter is true, this would indicate a connection to BDNF via the serotonin-BDNF loop. In this case, BDNF is again the underlying chemical providing the benefits of exercise, and endorphins act in a supporting role by blocking pain and reducing the cost associated with acquiring the benefits of exercise. The release of endorphins has an addictive effect, and more exercise is needed to achieve the same level of euphoria over time. In fact, endorphins attach to the same neuron receptors as opiates such as morphine and heroin (12). Yet, exercise is not nearly as addictive as these opiates; it's not even as addictive as milder substances such as nicotine. It seems strange that an activity as beneficial as exercise, with a built-in mechanism for addiction, is so easy to give up. According to some polls, only about 15% of Americans say they exercise regularly (18). The key to this seeming contradiction may lie in the delayed gratification experienced during exercise. Exercise differs from other addictions in that there is an initial amount of pain to endure before the euphoric payoff. The approximate 30-minute delay in the release of endorphins requires a certain level of fortitude that has not been cultivated by the American culture of video games, 30-second commercials, and various timesaving devices. In addition, exercising is made up of several tasks— putting on correct clothing, deciding on a form of exercise, maintaining adequate hydration, etc. Though each task may be mundane enough to form a habit, putting all the tasks together requires too much attention for exercise to be experienced entirely as a habit, which associates the reward or pleasure of completing a particular task with the first step of that task. In addition, the subconscious brain may use the feeling of fatigue as a regulated, anticipatory response to exercise in order to preserve homeostasis (8), possibly discouraging the continuance of exercise before the addictive euphoria is attained. If future research could find a way to trigger the release of endorphins at the start of physical activity, exercise might become more popular. Another possibility would be research around the synthesis of BDNF. If it really is the underlying chemical for all of exercise's nervous system benefits, then making it safely and readily accessible could allow people to circumvent exercise altogether, at least in terms of the nervous system. While exercise is attractive in theory, it can often be rather painful in actuality, and the discomfort of exercise is more immediately felt than its benefits. The delayed release of endorphins creates a lapse between the pain and the pleasure elements of physical activity. The next area for research could be finding ways to make the benefits of exercise more apparent while the exercise is actually occurring, thus satisfying the need for instant gratification and tipping the scales in favor of exercise. ReferencesNote that starred (*) sources are accessible only to Bryn Mawr, Haverford, and Swarthmore students through Tripod and double-starred (**) sources are informational, but not directly cited resources 1) Modie, Jonathan. (2003). "'Good' Chemical, Neurons in Brain Elevated Among Exercise Addicts." OHSU, online. 2) "Exercise protects brain cells affected by Parkinson's." (2004). Medical Research News, online. 3) "Exercise can help brain healing process." (2004). Medical Research News, online. 4) Chaudhry, Laura. (2004). "Brain Workout." South China Morning Post, online. 5) "Controlling Brain Wiring With the Flick of a Chemical Switch." (2005). AScribe Newswire, online.** 6) Kotulak, Ronald. (2005). "Exercise, education found to supercharge genes, reduce Alzheimer's." Chicago Tribune, online. 7) McKimmie, Marnie. (2005). "Walk away from depression." The West Australian (Perth), online. 8) "Exercise fatigue may be part of a response coordinated in the subconscious brain." (2004). Obesity, Fitness & Wellness Week, online. 9) "Keep Your Noggin Fit With Brain Exercise." (2003). Southern Illinois Healthcare, online.** 10) Francis, Lori. "The Biology of Pleasure." online.** 11) "How to Maintain Brain Power." (2005). Help the Aged, online.** 12) "How Does Exercise Affect Our Mood?" online. 13) Russo-Neustadt, A.A., R.C. Beard, Y.M. Huang, and C.W. Cotman. (2000). "Physical Activity and Antidepressant Treatment Potentiate the Expression of Specific Brain-Derived Neurotrophic Factor Transcripts in the Rat Hippocampus." Neuroscience, 101, 305-312.* 14) Rhodes, Justin S., Susan Jeffrey, Isabelle Girard, Gordon S. Mitchell, Henriette van Praag, Theodore Garland, Jr., and Fred H. Gage. (2003). "Exercise Increases Hippocampal Neurogenesis to High Levels but Does Not Improve Spatial Learning in Mice Bred for Increased Voluntary Wheel Running." Behavioral Neuroscience, 117, 1006-1016.* 15) "The Antidepressive Effects of Exercise." online. 16) Sanders, Jenny. "Brain Physiology." online. 17) Mattson, Mark P., Wenzhen Duan, Ruqian Wan, and Zhihong Guo. (2004). "Prophylactic Activation of Neuroprotective Stress Response Pathways by Dietary and Behavioral Manipulations." NeuroRx, 111-116, online. 18) Farley, Tom, and Deborah Cohen. (2001). "Fixing a Fat Nation." Washington Monthly, online. Comments: "Exercise increases concentrations of these neurotransmitters by stimulating the sympathetic nervous system (12). In addition, serotonin has a reciprocal relationship with BDNF, i.e. BDNF boosts serotonin production and serotonergic signaling stimulates BDNF expression (17). Since exercise also increases BDNF production directly, there is a reinforcement of the serotonin-BDNF loop, indicating exercise's significant potential as a mood-enhancer." This is the most important fact out of the article - i really like the idea of serotonin-BDNF loop .. Same way as depression can be caused by some a viscous cycle, the same way mood can be enhanced by this positive feedback loop. good thing to keep in mind while jogging Also worth of noting sugar suppresses BDNF. So please, post whatever you would like to this article. I will be updating it with useful info. It will be also available to view at http://www.evernote.com/l/AbR5gZan_09HNIDCi2mL_z2kpDML41ynXiA/ Later I will get all the good links together in one place and make a website out of it. Hopefully this will inspire others to do more research. Cheers!
  4. This post has been promoted to an article

Important Information

By using this site, you agree to our Terms of Use.